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Two-dimensional solitons in quasi-phase-matched quadratic crystals
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We study the existence and dynamics of two-dimensional spatial solitons in crystals that exhibit a periodic
modulation of both the refractive index and the second-order susceptibility for achieving quasi-phase-
matching. Far from resonances between the domain length of the periodic crystal and the diffraction length of
the beams, it is demonstrated that the properties of the solitons in this quasi-phase-matched geometry are
strongly influenced by the induced third-order nonlinearities. The stability properties of the two-dimensional
solitons are analyzed as a function of the total power, the effective wave-vector mismatch between the first and
second harmonics, and the relative strength between the induced third-order nonlinearity and the effective
second-order nonlinearity. Finally, the formation of two-dimensional solitons from a Gaussian beam excitation
is investigated numerically.
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I. INTRODUCTION

It has been known since the early days of nonlinear op
that the cascading of two second-order processes, such a
and down-conversion in a three wave mixing process, g
erally leads to nonlinear phase shifts of all waves involv
@1–3#. However, only recently has this phase modulat
been analyzed systematically@4#. In Ref. @4#, it was found
that the process depends primarily on the ratio of wa
vector mismatch and effective second-order susceptibi
This phenomenon also displays some unusual physical p
erties@4#; for instance, its effect may exceed appreciably
phase modulation obtained with intrinsic cubic nonlinea
ties. If the wave-vector mismatch is large, this phase s
resembles that achieved with an effective third-order non
earity and typical nonlinear effects, usually induced by cu
nonlinearities, such as all-optical switching, optical limitin
or soliton formation have been demonstrated@5–10#.

During the past few years, intense research activity
focused on both the experimental and theoretical invest
tions of phenomena related to these cascaded second-
processes and their potential use for all-optical applicatio
Thus, a large phase modulation was measured in severa
perimental setups, such as bulk KTP@5# and Ti-indiffused
LiNbO3 @11# or KTP @7# channel waveguides. Furthermor
the potential use of this effect to all-optical switching in
Mach-Zender interferometer@9# or phase-controlled transis
tor action @12# has also been experimentally demonstrat
With regard to theory, many schemes to achieve phase
amplitude modulation through cascading second-order in
action have been proposed@4,8,13–15# and their use to op-
tical transistors@12,16–20#, loop mirrors@21#, or nonlinear
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directional couplers@15# has been suggested.
As indicated above, the wave-vector mismatch is a k

parameter that controls the character of quadratic interact
There are several techniques for controlling wave-vec
matching of the waves propagating in a quadratic medium
as to achieve phase-matching. For instance, birefringe
based phase-matching techniques~PMT! use the anisotropic
nature of the dispersion relationk(v) to cancel the vector
mismatch between the fundamental wave~FW! and the sec-
ond harmonic~SH!, which propagate atv and 2v, respec-
tively @22#. Another traditional PMT is based on temperatu
tuning of waveguide dispersion, i.e., modal PMT@23#. Fi-
nally, quasi-phase-matching~QPM! is a powerful technique,
consisting of compensating the wave-vector misma
through artificial periodic variation of the quadratic nonline
coefficient x (2). The QPM technique offers several adva
tages: it uses the highest possiblex (2) coefficients; it elimi-
nates the spatial walk-off effects; it can use nonbirefring
materials; phase matching can be achieved at room temp
ture; and it allows higher flexibility in choosing the configu
ration of interacting waves, e.g., one can phase-match co
terpropagating waves.

Although the QPM technique was proposed in the sem
paper of Armstronget al.almost four decades ago@1#, recent
technological progresses allowed the routine fabrication
high quality QPM gratings. There are two major classes
QPM structure. Those in the first class consist in alternat
domains whose sign of thex (2) coefficient changes ever
semiperiod. They are obtained by standard poling techniq
of LiNbO3 or KTP crystals@24–26# or waveguides@27,28#
or, in the case of QPM gratings with slab waveguide geo
etry, by a poling procedure followed by crystal ion slicin
@29#. We will term this type of structures symmetric grating
~SG!. QPM structures of the second class will be term
asymmetric gratings~AG! and can involve a periodic modu
lation either of thex (2) coefficient alone, by use of alterna
ing quantum wells@30#, or of both refractive index andx (2)

coefficient, by stacking together thin slabs of different sem

f
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conductor crystals@31,32#. Finally, since they exhibit huge
nonlinearities, polymer materials can also be used to fa
cate QPM gratings@33#.

Over the last few years, soliton formation in quadra
media has been the ground of intense research activity,
experimental and theoretical. Thus, in addition to the fi
experimental verification of soliton existence in a bulk KT
crystal@34# and LiNbO3 slab waveguides@35#, the existence
and stability of soliton propagation in quadratic media ha
been demonstrated for various geometries: spatial soliton
slab waveguides@36# or bulk crystals@37–39# and walking
solitons in slab waveguides@40# or bulk crystals@41#. Sev-
eral theoretical studies have been reported on o
dimensional spatial soliton propagation in QPM waveguid
@42,43#. These studies have shown that the periodic mod
tion of the quadratic nonlinearity induces an artificial cub
nonlinearity that can compete with the former one. A disc
sion of this phenomenon as well as an analysis of the vali
of the theory describing this effect can be found in Ref.@44#.
Furthermore, it has been demonstrated that by modula
the grating the induced third-order nonlinearity can be f
ther increased@45#; a switching scheme based on this effe
has been proposed in Ref.@46#. The first experimental veri-
fication of two-dimensional soliton formation in QPM gra
ings was reported in Ref.@47#. For a comprehensive review
on quadratic solitons, see Ref.@48#.

In this paper we present, to our knowledge for the fi
time, a theoretical analysis of 2D soliton formation and th
stability upon propagation in QPM gratings, by taking in
account the higher-order nonlinearities induced by the p
odicity of the grating@42#. We consider both SG, for which
the averagex (2) coefficient vanishes, as well AG, for whic
both the averagex (2) coefficient and the modulation of th
refractive indices are nonzero. The paper is organized as
lows. In the following section we introduce the mathemati
model that describes the nonlinear interaction between
cw beams propagating in a QPM grating. Then, in Sec.
we find, numerically, the QPM solitons that are stable up
propagation in the QPM grating and the influence of
induced third-order nonlinearities on their properties. F
thermore, a detailed stability analysis of the QPM solitons
presented in Sec. IV. In Sec. V, we investigate the excita
of these QPM solitons, using Gaussian beams. Two si
tions are taken into account: launching of both harmon
@seeded second harmonic generation~SHG!# or of only the
FW ~unseeded SHG!. Finally, we conclude with a summar
and discussion of our results.

II. MATHEMATICAL MODEL

We consider the propagation in a lossless QPM grat
under type-I SHG conditions, of a cw beam at frequencyv
and its SH at frequency 2v. The QPM grating consists of
periodic structure, for which both the linear part of the su
ceptibility ~refractive index! and the quadratic susceptibilit
are periodic functions of the longitudinal distance, as it
illustrated in Fig. 1. In this geometry, both the FW and t
SH are polarized along the same direction, which is als
principal crystal axis; therefore, no walk-off effects a
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present. Since we want to describe both SG and AG,
allow for the averaged~normalized! quadratic susceptibility
coefficientg0 to be nonzero, a situation that describes QP
gratings fabricated from semiconductor materials. We c
sider that the two co-propagating fields are plane wa
propagating along thez direction,

Ei~r ,t !5
1

2
êEi~x,y,z!exp@ i ~v i t2kiz!#1c.c., ~1!

where ê is a unit vector along the polarization direction,x
and y are the transverse coordinates,z is the longitudinal
distance,v15v, v252v, and Ei and ki5k(v i) are the
electric fields and wave vectors at the two harmonics, resp
tively. Then, within the slowly varying envelope approxim
tion, the two co-propagating fields obey the following syste
of equations@49#:

2ik1

]E1

]z
1¹'

2 E11
2v1

2n̄1

c2
øDn1~z!E1

1
2v1

2

c2
x (2)~z!E1* E2 exp~2 iDkz!50, ~2a!

2ik2

]E2

]z
1¹'

2 E21
2v2

2n̄2

c2
Dn2~z!E2

1
v2

2

c2
x (2)~z!E1

2 exp~ iDkz!50, ~2b!

where¹'
2 is the transverse Laplacian,Dk52k12k2 is the

wave-vector mismatch,x (2)(z) is the quadratic nonlinear co
efficient and isz dependent,n̄1 ,n̄2 andDn1(z),Dn2(z) are,
respectively, the averages and the modulations of the
refractive indices at the FW and the SH.

In order to normalize this system, we introduce a new
of normalized variables and functions:z5z/z0 , h5x/w0 ,

FIG. 1. Schematic presentation of a QPM grating:g0 is the
average value of the quadratic nonlinearity,g is its modulation
amplitude, andDn1 and Dn2 are the deviations from the mea
value of the refractive indices at the FW and SH, respectively.
8-2
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j5y/w0 , u5A1E1, and v5A2E2. Here, z05k1w0
2 is the

diffraction length,w0 is the characteristic beam width, an

Ai5Ae0cn̄i /2S0 are normalization constants, withc being
the speed of light,e0 the vacuum permittivity, andS0
51 GW/cm2 a normalization intensity. Upon normalizatio
the system of equations~2! becomes

i
]u

]z
1

1

2
¹'

2 u1au~z!u1G~z!u* v exp~2 ibz!50,

~3a!

i
]v
]z

1
1

4
¹'

2 v12av~z!v1G~z!u2 exp~ ibz!50, ~3b!

where b5z0Dk is the normalized wave vector mismatc
au,v(z)5vz0Dn1,2(z)/c are the normalized modulations o
the refractive indices@for a SG,au,v(z)[0 andg050], and

G(z)5(vz0x (2)/c)A2S0 /e0cn̄1
2n̄2 is the normalized para

metric coupling strength.
For the sake of simplicity, in what follows we assume th

the functionsau,v(z) and G(z) that characterize the QPM
grating are single-periodic functions. For reasons that will
discussed later, more complex choices have been propos
other studies, e.g., multi-@45,50# or quasiperiodic@43# func-
tions. With this choice, there are three physical lengths
characterize the system, and the interplay among these
acteristic lengths determines the dynamics of the interac
beams. These three lengths are the diffraction lengthz0, the
coherence lengthLc5p/uDku, and the domain lengthL. In
normalized units,z051 andLc5p/ubu. We consider here a
typical QPM grating for which the domain length is muc
smaller than the diffraction length, that is,L!1. Then, the
grating wave vector defined byuku5p/L satisfies the rela-
tion uku@1, implying that 1/uku is a normalized characteris
tic length that is much smaller than 1.

In order to analyze the beam propagation in the QP
grating, we use an asymptotic expansion technique in
duced in Ref.@42#. To this end, we expand in Fourier seri
the grating functionsG(z) and au,v(z), and the fields
u(h,j;z) andv(h,j;z):

G~z!5g01g(
n

gneinkz, ~4a!

au,v~z!5au,v(
n

gneinkz, ~4b!

u~h,j;z!5(
n

un~h,j;z!einkz, ~4c!

v~h,j;z!5(
n

vn~h,j;z!ei (nk1b̄)z,

whereg0 andg are, respectively, the average and the mo
lation amplitudes of the parametric coupling strength,au,v
are the amplitudes of the modulation of the refractive ind
at the frequencies of the two harmonics,un(h,j;z) and
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vn(h,j;z) are slowly varying functions with respect to th
variables, as compared to the exponential, andb̄5b2k is
the effective phase mismatch parameter. We assume tha
phase mismatch introduced by the QPM grating can be v
well controlled, so thatb̄ is very small~although bothb and
uku must be large!. For the geometry in Fig. 1, the Fourie
coefficientsgn are given by the expression

gn5H 2sgn~k!

ipn
, n odd

0, n even.

~5!

Here, the sgn(k) factor ensures that both positive and neg
tive values ofk correspond to the same grating. Cons
quently, since sgn(b)5sgn(k), we can treat both casesb
"0 at the same time.

Now, we assume that the higher harmonics in expansi
~4c! are of the orderO(1/uku) or smaller, whereasu0 andv0
are of the orderO(1). Then, inserting expressions~4a!–~4c!
in system~3! and collecting all terms of the orderO(1), we
obtain the relationships between the higher-order Fourier
efficients and the zero-order ones~or, as called in this paper
the average fields!, u0 andv0:

unÞ05
1

nk
@augnu01~g0dn,211ggn11!u0* v0#, ~6a!

vnÞ05
1

nk
@2avgnv01~g0dn,11ggn21!u0

2#. ~6b!

Then, by inserting these expressions in system~3! and ne-
glecting higher-order terms in the corresponding system
describes the evolution of the zero-order fields, we end
with the following system of equations that describes
evolution of the zero-order fields:

i
]u0

]z
1

1

2
¹'

2 u01ru0* v01d~ uu0u22uv0u2!u050, ~7a!

i
]v0

]z
1

1

4
¹'

2 v02b̄v01r* u0
222duu0u2v050. ~7b!

Here, r is the effective second-order nonlinearity and
given by

r5
2i sgn~k!

p F2g0

k
~au2av!2gG , ~8!

andd characterizes the magnitude of the induced third-or
nonlinearity, and can be written as

d5
1

k Fg0
21g2S 12

8

p2D G . ~9!

Equations~7!, with the Laplacian replaced by transver
second-order derivative, were first derived in Ref.@42#, to
describe the 1D case. Equation~8! shows that the effective
second-order nonlinearity in a SG (g050) is decreased by a
8-3
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factor of 2/p, as compared to the case of bulk crystal,
well-known result. However, the most important cons
quence of the averaging procedure is the appearance o
induced effective third-order nonlinearity, similar to a Ke
effect. There is, though, an important difference: the s
phase and cross-phase modulation terms have opposite s
This means that by tuning the parameters of the QPM gra
one can obtain either focusing or defocusing third-order n
linearities; this asymmetric structure of the induced high
order nonlinearities has been recently verified experiment
@51#.

III. QPM SOLITONS

In this section we introduce the soliton solutions of sy
tem ~7! and discuss their physical properties. To begin w
we rescale the fieldsu0 andv0 by the effective second-orde
nonlinearityr, u05ũ0 /uru, v05 ṽ0 /r. Then, system~7! be-
comes

i
]ũ0

]z
1

1

2
¹'

2 ũ01ũ0* ṽ01s~ uũ0u22uṽ0u2!ũ050, ~10a!

i
] ṽ0

]z
1

1

4
¹'

2 ṽ02b̄ ṽ01ũ0
222suũ0u2ṽ050, ~10b!

wheres5d/uru2 gives the relative strength between the
duced cubic nonlinearity and the effective quadratic non
earity. For typical SG, the parameters&0.05, but, as we will
show later, even such relatively small values can have a
matic influence on the soliton formation process. Moreov
for AG or certain specially engineered gratings@45,50#, the
parameters can become close to 1. Furthermore, it is im
portant to mention that the parameters is determined only
by the parametersx5g0 /g, p5(au2av)/k, and the grating
wave vectork:

s5
1

4k

p2~x211!28

~2px21!2
. ~11!

In what follows, we look for solitary solutions~solitons!
of system~10!, which are localized stationary solutions
the form

ũ0~h,j;z!5ū0~r !eilz, ṽ0~h,j;z!5 v̄0~r !e2ilz,
~12!

where the parameterl is the soliton wave vector andr
5Ah21j2. Since we assumed that the functionsu0(h,j;z)
andv0(h,j;z) vary slowly as compared toeikz, the soliton
parameterl must be much smaller thank. Here, we con-
sider only lowest-order solutions~with no nodes! with radial
symmetry. Moreover, we consider only the case in wh
both the functions are real and neither of the two solutio
ū0(r ) and v̄0(r ), is identically equal to 0. Although from a
rigorous purely mathematical point of view these solutio
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are not soliton solutions of system~10! @52#, we will follow
the terminology in the physics literature and call them so
tons.

By inserting Eqs.~12! in Eqs.~10!, one can readily verify
that the soliton solutions are given by the following syste
of equations:

1

2
¹'

2 ū02lū01ū0v̄01s~ ū0
22 v̄0

2!ū050, ~13a!

1

4
¹'

2 v̄02~2l1b̄ !v̄01ū0
222sū0

2v̄050. ~13b!

Furthermore, from the expansions in Eq.~4c!, and by us-
ing relations~6!, one can see that, at the first-order in t
smallness of parametere51/uku, the soliton solutions of full
system~3! and those of averaged system~10! are related by
the following relations:

u~h,j;0!5
ũ0~r !

uru
2

1

uku F ipau

2
1S 2ig

p
1g0 sgn~k! D ṽ0~r !

r
G

3
ũ0~r !

uru
1OS 1

uku2D , ~14a!

v~h,j;0!5
ṽ0~r !

r
2

1

uku F ipav
ṽ0~r !

r

1S 2ig

p
2g0 sgn~k! D ũ0

2~r !

uru2
G1OS 1

uku2
D .

~14b!

The existence and dynamics of QPM soliton solutions
full system ~3! are studied by finding first the soliton solu
tions of system~10!, whose coefficients do not depend on t
longitudinal distancez, and then by using relations~14! to
obtain the soliton solutions of full system~3!, at z50. We
call the solitons of system~10! zero-order solitons, wherea
those obtained from the zero-order ones through transfor
tion ~14! are called first-order solitons. Thus, the zero-ord
solitons are obtained by keeping the terms of orderO(1) in
Eqs.~14!, whereas the first-order solitons are obtained fro
Eqs.~14! by keeping all the terms up to the orderO(1/uku).
Then, in order to analyze the stability properties of the
solitons, they are propagated in the grating by integrat
numerically full system~3!.

For numerical integration we used a standard Cra
Nicolson method, with transparent boundary conditions i
posed at frontiers@53#. Typically, at each longitudinal step
four Picard iterations and ten Gauss-Seidel iterations w
needed. The stationary solutions of system~10!, that is, the
solutions of system~13!, are determined numerically by us
ing a standard band-matrix method with Newton-type ite
tions @54#. Since we look for solutions with radial symmetr
system~13! can be formulated such that only one transve
coordinater enters. This reduction considerably simplifie
the computation.
8-4
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We applied this method and determined soliton solutio
of system~3!. A typical example is presented in Figs. 2 a
3. Thus, Fig. 2 presents a soliton solution obtained by ap
ing transformation~14! to a soliton solution of averaged sy
tem ~10! and keeping all the terms up to the orderO(1/uku),
that is, the first-order solitons. The zero-order solitons

FIG. 2. ~Color online! First-order QPM solitons of full system
~3!, obtained from the solitons of averaged system~10! by applying
transformations~14!. The soliton parameters arel50.5, s50.05,

and b̄50 ~phase-matched solitons!.

FIG. 3. ~Color online! Soliton solutions for averaged syste

~13!. The soliton parameters arel50.5, s50.05, andb̄50 ~the
same as in Fig. 2!.
01660
s
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shown in Fig. 3. Note that in the case of approximate s
tons, that is, zero-order solutions, the difference in the soli
amplitudes at the two harmonics is smaller as compare
the first-order soliton.

Before analyzing in more detail how these solitons pro
gate in a QPM grating, note that one set of parameters
defines a soliton solution of system~10! corresponds to an
entire family of QPM gratings, characterized by this set
parameters. More exactly, there is an infinite set of choice
the grating parametersx, p, and k that correspond to the
same value of the induced cubic nonlinearity strengths.
Therefore, the solitons we analyze here, characterized b
certain parameters, can be excited in a multitude of QPM
gratings of different types, e.g., in both SG and AG.

In order to study the validity of our perturbative approac
we numerically integrated full system~3!, using as initial
conditions both the zero-order soliton and the soliton o
tained from the zero-order one by using expressions~14!,
that is, the first-order soliton. We used two types of gratin
first, a SG characterized by the parametersau5av50, g0
50, g51, andk59.35; the second, an AG grating, with th
parametersau51, av51.928, g051, g50.4, and k
5308.42. Both these sets of parameters correspond to
sames50.05. We monitored both the amplitudes of th
solitons as well as their intensities. The intensities at the
harmonics, as well as the total intensity, are defined by
following expressions:

I ũ0
5E uũ0~h,j;z!u2dhdj, ~15a!

I ṽ0
5E uṽ0~h,j;z!u2dhdj, ~15b!

Ĩ 05I ũ0
1I ṽ0

. ~15c!

An important property of the intensityĨ 0, which can be eas-
ily derived from system~10!, is that it is independent of the
longitudinal distancez, that is, it is a conserved quantity.

We present in Fig. 4 the soliton propagation in a SG ch
acterized by the parameters given above. Note that in

FIG. 4. Amplitudes~upper row! and the corresponding intens
ties ~lower row! evolution, in a SG, of the zero-order~left column!
and first-order~right column!. Soliton propagation is described b
full system~3!. The soliton parameters are as in Fig. 3.
8-5
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FIG. 5. Evolution of first-order soliton inten
sities upon propagation in an AG. In the inse
soliton propagation over a diffraction length, afte
the steady state is reached. The soliton para
eters are as in Fig. 3.
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figure the intensitiesI u0
,I v0

and I u ,I v represent the beam
intensities described by full system~3! and correspond, re
spectively, to the zero-order and second-order solitons
fined earlier. To be more specific, to calculateI u0

andI v0
we

used the zero-order soliton as initial condition for full syste
~3! and integrated it numerically. Then, the intensitiesI u0

and

I v0
were calculated by integrating the propagating fields;

intensitiesI u and I v were calculated in a similar way exce
that as initial conditions we used the first-order solitons. F
ure 4 illustrates that, even the zero-order soliton solution
very good approximation for the QPM soliton that is form
upon propagation in the grating. Thus, in the case of ze
order approximation, a soliton is formed after just a fe
diffraction lengths, whereas in the case in which the fir
order soliton is launched into the QPM grating the transi
regime can hardly be observed. We observed that in b
cases the amount of energy radiated during the transien
gime is negligible. This means that even in the case of ze
order soliton, during the initial stage of the propagation,
energy is not radiated but, in fact, is redistributed betwe
the two harmonics.

The fast oscillations of the beam intensities, shown in F
4, can be understood by noting the relationship between
intensities of the fieldsu(h,j;z) andv(h,j;z), and the in-
tensities corresponding to the averaged fieldsI ũ0

and I ṽ0
.

Thus, by using expansions~4c! and definitions~15a! and
~15b!, one obtains the following relations:

I u5
I ũ0

uru2
1

2iK

kuru2r
Fg0 sin~kz!2

4 sgn~k!

p (
n>1

cos~2nkz!

4n221
G

1OS 1

uku2D , ~16a!

I v5
I ṽ0

uru2
2

2iK

kuru2r
Fg0 sin~kz!2

4 sgn~k!

p (
n>1

cos~2nkz!

4n221
G

1OS 1

uku2
D , ~16b!
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whereK5* ũ0
2ṽ0dh dj is a constant. Similar relation hav

been derived in Ref.@42#, for the particular case of 1D SG
These equations show that, over certain constant value
the intensities of the beams,I ũ0 ,ṽ0

/uru2, there are superim-
posed fast modulations with the spatial frequency equa
2k. Their origin is the existence of higher nonzero terms
the Fourier expansion~4c!. Note that in the case of AG (g0
Þ0) the spatial frequency of the modulation of the inten
ties is equal tok. Also, notice that the beam intensities at t
zero- and first-order are conserved, that is,I[I u1I v

5 Ĩ 0 /uru2.
The same behavior is observed in Fig. 5, which shows

evolution of the first-order soliton upon propagation in
AG characterized by the parameters given above. In cont
to the previous case, the transient distance over which
input solitons reach a steady-state propagation is slig
larger. Also, notice the much larger spatial oscillation fr
quency that can be observed in this case. Obviously, thi
due to the fact that in this case the grating periodicity
much smaller.

To gain a better understanding of the differences d
played upon propagation by the zero- and first-order appr
mations of the QPM solitons, we also determined the dep
dence of the total intensity and the Hamiltonian, on t
longitudinal distancez; the results are shown in Fig. 6. Th
HamiltoniansH and H0 are given by the following expres
sions:

H5
1

2E H u¹'cu21
1

4
u¹'fu222ac~z!ucu2

2@2af~z!2b#ufu22G~z!~c* 2f1f* c2!J dh dj,

~17a!

H05
1

2E H u¹'ũ0u21
1

4
u¹'ṽ0u21b̄uṽ0u22~ ũ0*

2ṽ01 ṽ0* ũ0
2!

22sS uũ0u2

2
2uṽ0u2D uũ0u2J dh dj, ~17b!
8-6



o

-

-

rly

n
st
is

io
i

g
io
h
-

s
a
u
iz
a

-
pa-
s-
otal
r-
ant
se
ge

in-

nsi-
in-
ses
in

ers

his
the

in
t
d.

rd-

ia
r

m

-

TWO-DIMENSIONAL SOLITONS IN QUASI-PHASE- . . . PHYSICAL REVIEW E 68, 016608 ~2003!
wherec5u andf5veibz. They correspond, respectively, t
systems~3! and~10!. In fact, systems~3! and~10! represent
the Hamilton equations associated to the Hamiltonians~17!;
for example, Eqs.~10! are equivalent to the following ca
nonical equations:

i
]ũ0

]z
5

dH0

dũ0*
, ~18a!

i
] ṽ0

]z
52

dH0

d ṽ0*
, ~18b!

with a similar set of equations forH, c, and f. Here, the
symbol d indicates a functional derivative. There is an im
portant distinction between the two cases: whileH0 is a con-
stant of motion,H depends on the longitudinal distancez.
The fact thatH is not conserved upon propagation is clea
seen in Fig. 6. Notice that bothH (0) andH (1) shown in this
figure have been computed by using the HamiltonianH as-
sociated to full system~3!. Thus, H (0) was calculated by
using the zero-order soliton as initial condition, whereasH (1)

was calculated by using the first-order soliton as initial co
dition. Furthermore, Fig. 6 shows that in the case of fir
order approximation only a small amount of radiation
emitted. In contrast, in the case of zero-order approximat
part of the soliton energy is radiated before the soliton
reshaped to its steady-state form. The plateau at the be
ning of the propagation signifies the fact that the radiat
propagates over several diffraction lengths before it reac
the boundaries situated athb ,jb5610, and leaves the com
putational domain.

As has been discussed in Sec. II, an important con
quence of the averaging process is the fact that the be
interact in the QPM grating as if they were under the infl
ence of Kerr-type nonlinearities. In order to character
quantitatively this effect, we found the QPM solitons th

FIG. 6. Intensities~left axis! and Hamiltonians~right axis! vs
the longitudinal distancez. HamiltonianH (0) ~—! and intensityI 0

~- - -! correspond to the zero-order soliton, whereas Hamilton
H (1) (•••) and intensityI 1 (2•2) correspond to the first-orde
soliton.
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correspond to system~10!, for various values of the soliton
wave-vector parameterl, for three values of the effective
wave vector mismatch,b̄522,0,2; in each case, the com
putations were repeated for three different values of the
rameters. The conclusions of our computations are illu
trated in Fig. 7, which shows the dependence on the t
beam intensityI 0 of the peak intensity ratios of the two ha
monics of the solitons of the averaged system. An import
conclusion illustrated by this figure is that, as in the 1D ca
@42#, even small induced cubic nonlinearities can chan
drastically the characteristics of the QPM solitons. For
stance, the peak amplitude ratio ats520.05 is almost twice
as large as its value ats50. In addition, this change in the
soliton characteristics is more pronounced at higher inte
ties. Thus, the influence of the relative strength of the
duced cubic nonlinearities on soliton dynamics increa
with the beam intensity. Another phenomenon illustrated
Fig. 7 is that, for positive effective wave vector paramet
b̄, there is a critical threshold of the total beam intensityI 0,
below which QPM solitons cannot exist. Furthermore, t
threshold intensity depends on the relative strength of
induced cubic nonlinearitys. This result will be explained in
the following section, where soliton stability is studied
detail. Finally, note that forsÞ0 the solitons no longer exis
if the total intensityI 0 is larger than some certain threshol
This behavior is not observed in the 1D case.

In order to investigate the influence of the induced thi

n

FIG. 7. Peak intensities’ ratio of the soliton solutions of syste
~10!, calculated fors520.05, s50, and s50.05 ~a! and s
520.02, s50, ands50.02 ~b!. The effective wave-vector mis

match isb̄522 (•••), b̄50 ~—!, andb̄52 (2•2).
8-7
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PANOIU et al. PHYSICAL REVIEW E 68, 016608 ~2003!
order nonlinearity on the QPM solitons, we performed t
following numerical experiment: we determined the solito
of system~10! that correspond tob̄50 and s50.05, for
several values of the soliton parameterl. Then, these solu
tions were used as initial conditions for full system~3! and
integrated numerically until a stationary propagation w
reached. We then determined the ratio of the peak intens
at the two harmonics and compared the results with th
that correspond to the soliton solutions of system~10!. The
results are presented in Fig. 8. As this figure illustrates, th
is a large discrepancy between the predictions of sys
~10!, in which the third-order nonlinearity is taken into a
count (sÞ0), and the predictions of this system with th
third-order nonlinearity neglected (s50). As one can see
for small soliton wave vectorsl, the former agree well with
the numerical simulations of full system~3!. Conversely, Fig.
8 shows that forl*1 the predictions based on the avera
model are no longer accurate. The source of this discrepa
can be easily understood by noting that one of the conditi
under which the average model was derived is that the a
age fields must vary slowly with respect to the exponen
eikz. This amounts to the requirement that the soliton para
eterl must be much smaller than the grating wave vectork.

IV. STABILITY ANALYSIS

In this section, we analyze in detail the stability propert
of the QPM solitons. In order to do this, we first determi
the stability properties of soliton solutions of the averag
system~10! and then we verify whether stable solitons
system ~10! remain stable upon propagation in the QP
grating described by full system~3!.

It can readily be shown using Eqs.~18! that solitons, or
stationary solutions of system~10!, correspond to extrema o
the functional H01lI 0, that is, they satisfy the relatio
d$H01lI 0%50. Here, the soliton wave vectorl plays the
role of a Lagrange multiplier. Furthermore, for a fixedI 0,
stable solutions correspond to local minima of the Ham

FIG. 8. Peak intensities’ ratioR5uv0(0,0)u2/uu0(0,0)u2 of the
soliton solutions of system~10!, calculated fors50.05 ~—! and
s50 ~- - -!, vs soliton parameterl. The stars correspond toR
calculated by numerical integration of system~3!. The effective

wave-vector mismatch isb̄50.
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tonian H0, in the function space$ũ0 ,ṽ0%, whereas local
maxima lead to unstable solutions. Another approach for
tablishing the stability properties of the soliton solutions us
the Vakhitov-Kolokolov criterion @55#, which states that
stable solutions correspond to the positive-sloped branc
of the function I 0(l). Note that this is only a necessar
condition for soliton stability@39#; therefore, we checked by
numerical simulations the validity of the results obtained
applying this criterion.

We have determined the functional dependence of
HamiltonianH0 and total intensityI 0 on the soliton param-
eter l; the dependence ofI 0 on l is presented in Fig. 9
There are several phenomena illustrated by this figure. F
for nonzero effective wave-vector mismatches,b̄Þ0, soli-
tons are formed only if the intensityI 0 is above a certain
threshold value. Furthermore, forb̄.0, the solitons are
stable for all values ofl for which they exist, whereas fo
b̄,0 only the solitons that correspond to the upper branch
the multivalued functionl(I 0), that is, those that satisfy th
Vakhitov-Kolokolov criterion, are stable. Forb̄50, stable
solitons exist at any intensityI 0. We mention that, forb̄
.0, the threshold for soliton existence is approximative
given by the relationI 0

thr5b̄I NLS , where I NLS.5.85 is the
so-called collapse threshold for the two-dimensional non

FIG. 9. The intensityI 0 vs soliton wave-vector parameterl,
calculated fors520.05~a!, s50.05~b!, ands50 ~c!. The effec-

tive wave-vector mismatch isb̄522 ~- - -!, b̄50 ~—!, and b̄
52 (2•2); dotted branches correspond to unstable solutions.
8-8
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TWO-DIMENSIONAL SOLITONS IN QUASI-PHASE- . . . PHYSICAL REVIEW E 68, 016608 ~2003!
ear Schro¨dinger equation model@56–58#. This result has pre-
viously been established for 2D solitons in bulk quadra
media@37,41#. The second important fact illustrated in Fig.
is that the functional dependenceI 0(l) is strongly dependen
on the induced cubic nonlinearity strengths.

To see better the influence of the induced cubic nonline
ity strengths on the soliton parameters, we present in F
10 the dependence of the critical intensityI 0

cr and the corre-
sponding minimum soliton wave vectorlmin on the param-
eters. Here, the critical intensityI 0

cr is defined as the mini-

mum value ofI 0 for which, for b̄,0, a stable soliton exists
This figure illustrates that variations ins of only 0.05 pro-
duce a change inI 0

cr of more than 20%.
In order to verify the results derived from theI 0 vs l

dependency, we determined numerically the dependenc
the HamiltonianH0 on the total intensityI 0; the results are
shown in Fig. 11. Thus, the conclusions suggested by
figure are in complete agreement with those derived from
I 0(l) dependence. For instance, forb̄,0, theH02I 0 dia-
gram has two branches; however, since they correspond
lower value of the HamiltonianH0, only the solitons on the
lower branch are stable. This means that, upon propagatio
soliton that corresponds to the upper branch will either de
to radiation or transform into a soliton belonging to the low
branch. This fact can also be derived from the analytic
pendence of the HamiltonianH0 on the intensityI 0,

H052
1

2
lI 01

1

4
b̄I v0

1sC, ~19!

where

C5
1

2E S uũ0u2

2
2uṽ0u2D uũ0u2dh dj ~20!

is a constant. Forb̄,0, there are two values of the Hami
tonianH0 that correspond to the same intensityI 0; however,
the higher value corresponds to an unstable solution.

To investigate whether these stability properties of
solitons of averaged system~10! can be extended to th

FIG. 10. The critical intensityI 0
cr ~—! and the corresponding

minimum soliton wave vectorlmin ~- - -! vs induced cubic nonlin-
earity strengths.
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QPM solitons of full system~3!, we performed an extensiv
series of numerical simulations. Thus, solitons correspond
to different regions of theH02I 0 diagram were converted to
the u2v fields by using relations~14!, and then the resul
was used as initial conditions for system~3!. With these ini-
tial conditions, system~3! was then numerically integrate
over a distancez;35 diffraction lengths~this limit was im-
posed by the required computation time!. The conclusion of
these numerical tests was that stable solitons that corres
to system~10! remain stable upon propagation in the QP
grating described by full system~3!.

V. QPM SOLITON EXCITATION
FROM GAUSSIAN BEAMS

Since in real experiments one cannot launch into a Q
grating beams with spatial shapes that rigorously ma
those of specific QPM solitons, it is very important to stu
whether the QPM solitons described here can be exc
from the beams that are more accessible experimentally,
is, Gaussian beams. Therefore, in this section, we exam
the characteristics of QPM soliton excitation from Gauss
beams.

We analyze two distinct cases: in the first case, the be
are launched in a SG, whereas in the second case an A
considered. In both cases, two different experimental con
tions are investigated. The first one corresponds to a see

FIG. 11. The HamiltonianH0 vs the intensityI 0, calculated for
s520.05 ~a!, s50.05 ~b!, and s50 ~c!. The effective wave-

vector mismatch isb̄522 ~- - -!, b̄50 ~—!, and b̄52 (2•2);
dotted lines correspond to unstable solutions.
8-9
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PANOIU et al. PHYSICAL REVIEW E 68, 016608 ~2003!
SHG experiment, that is, at the input facet of the grating b
FW and SH are launched. The second case corresponds
more common experimental setup, that is, to unseeded S
in which case only the FW is launched at the input facet
the grating. In both cases we assume that the gratings
perfectly phase matched, that is,b̄50 (b5k).

The Gaussian beams launched into the QPM grating
described by the following formulas:

u~h,j;0!5Aue2r 2/wu
2
, ~21a!

v~h,j;0!5Ave2r 2/wv
2
, ~21b!

whereAu,v andwu,v are the amplitudes and widths, respe
tively, of the two Gaussian beams. For these expressions
relationship between the beam intensity and its paramete

I u,v5
pwu,v

2 Au,v
2

2
. ~22!

In order to study the soliton excitation from Gaussi
beams we proceeded as follows. First, we chose the am
tudes and intensities of the Gaussians at the two harmo
to be equal to those of a QPM soliton that is formed in
specific QPM grating that we analyze. Then, by using E
~22!, we calculated the corresponding widths of the Gau
ians. Before presenting our results, we want to stress an
portant fact regarding the initial relative phase between
two harmonics. As one can observe from the derivation
the equations describing the QPM solitons, the relative ph
between the two harmonics that form a QPM soliton is eq
to p/2. It has been established@59# that this value of the
initial relative phase between the two harmonics correspo
to a case in which, during the process of soliton formation
emitts the smallest amount of radiation. Therefore, in w
follows, we choose one of the amplitudes to be real, wh
the other one is purely imaginary.

We started by launching the Gaussian beams in the
described in Sec. III and the results are presented in Fig.
Figure 12~a! shows the results corresponding to the see
SHG. The beams’ parameters were calculated by follow
the procedure previously described. However, in order
compensate for the larger amount of radiation emitted,
compared to the case when into the grating are launc
exact QPM solitons, the intensities of the two beams w
slightly larger than those corresponding to the soliton in F
2. Figure 12~a! shows that, as compared to the case of soli
propagation, which was described in Sec. III, the transi
distance over which the solitons are formed is sligh
longer; however, the intensities of the solitons that eventu
form are very close to those that correspond to the case w
pure solitons are launched into the QPM grating. In the
seeded SHG case, presented in Fig. 12~b!, the transient dis-
tance over which the beams reshape to form a stable Q
soliton is much longer. In addition, the amount of radiati
shed off by the beams is larger, a consequence of the fact
the input beams are very different from a pure soliton so
tion. However, after the beams propagate a certain dista
in this case too a QPM soliton is formed.
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In Fig. 13 we show the results of the propagation of t
Gaussian beams in the AG described in Sec. III. This fig
shows that in the case of the AG, when compared to the
case, the dynamics of the interacting beams during the t
sient regime is more complex. Moreover, the amount of
diation emitted during the process of soliton formation
larger in this case, too. This result can be explained by
fact that the adjacent domains in an AG have different refr
tive indices, so that the beams are scattered at the dom
interfaces. However, in the case of AG too, after a cert
transient regime, QPM solitons are formed in both see
and unseeded numerical experiments.

To conclude this section, we mention that we repeated
numerical experiments described above, for different val
of the QPM grating and beam parameters. The conclus
was that although we obtained different quantitative resu
the general characteristics of the process of soliton excita
from the Gaussian beams were similar to those descr
above.

VI. CONCLUSIONS

In conclusion, we have studied both the formation of tw
dimensional solitons in a QPM grating as well as their s
bility properties upon propagation. The QPM gratings tak
into account covered two distinct classes: in the first ca

FIG. 12. Evolution of the intensities of Gaussian bea
launched in a SG characterized by the following parameters:au

5av50, g050, g51, andk59.35. The parameters of the inpu
beams are~a! Au52.92, Av51.8, wu51.52, andwv51.49~seeded
SHG!; ~b! Au53, Av51022, wu51.8, and wv51 ~unseeded
SHG!.
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TWO-DIMENSIONAL SOLITONS IN QUASI-PHASE- . . . PHYSICAL REVIEW E 68, 016608 ~2003!
SG were considered, that is, only the quadratic nonlinea
coefficient was periodically modulated, whereas in the s
ond case, AG gratings, both the quadratic nonlinear coe
cient and the refractive indices at the two harmonics w
periodic functions with respect to the longitudinal distance
has been demonstrated that in both cases, in the first ord
an asymptotic perturbation theory, the beam dynamics
strongly influenced by an induced third-order Kerr-like no
linearity. A detailed description of the influence of this i
duced cubic nonlinearity on the QPM soliton dynamics a
their stability properties has been presented. Thus, it
been shown that this cubic nonlinearity can shift by mo
that 20% the threshold intensity above which the solitons
exist, both for positive and negative effective phase m
matches. The conclusions derived from the first-or

FIG. 13. Evolution of the intensities of Gaussian bea
launched in an AG characterized by the following parameters:au

51, av51.928,g051, g50.4, andk5308.42. The parameters o
the input beams are~a! Au56.28, Av55.49, wu51.52, andwv
51.49 ~seeded SHG!; ~b! Au57.07, Av51022, wu51.8, andwv
51 ~unseeded SHG!. In the insets, beam profiles calculated af
the stationary propagation are reached~one diffraction length is
shown!.
rs

pt

G
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asymptotic analysis were verified by numerical integration
the complete set of equations that describes beam prop
tion in a QPM grating.

We also discussed the excitation of QPM solitons
Gaussian beams. For both types of the QPM gratings con
ered here, SG and AG, we demonstrated that QPM solit
can be obtained from Gaussian beams, when either both
monics are injected into the grating~seeded SHG! or only
the FW is inserted into the grating~unseeded SHG!. We
demonstrated that when SG are used, the amount of en
that is radiated over the transient distance over which
soliton is formed is smaller as compared to that that co
sponds to the case of soliton generation in AG. We a
showed that, in both cases, after a transient regime du
which part of the input energy is radiated out, stable QP
solitons are formed.

As an important remark, we mention that the QPM so
tons investigated in this paper are very similar to the guidi
center solitons that can propagate in an optical fiber link t
contains optical amplifiers, periodically inserted in the tran
mission line@60#. As in the case of QPM solitons discusse
here, guiding-center solitons in optical fibers are form
when the characteristic length associated to the periodicit
the system~the distance between amplifiers! is much smaller
than the characteristic length associated to the dynamic
the pulses~the dispersion length!. However, the averaged
nonlinear equation describing the guiding-center solitons
optical fibers does not contain nonlinearities of higher ord
as compared to the original equation, the nonlinear Sch¨-
dinger equation. Based on this similarity, one expects to
serve a set of new and interesting phenomena when the
ing period becomes commensurable with the soli
diffraction length. For instance, in such a case, it is expec
to observe a resonant radiative reshaping of the QPM s
tons whose parameters satisfy this condition.

Finally, we mention that the results presented here co
be applied to other optical structures containing periodica
alternating slabs of materials with different optical prope
ties, e.g., Kerr-layered structures@61,62#, or tandem struc-
tures where the nonlinearity and the group velocity disp
sion are spatially distributed between the adjacent slabs@63#.
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